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LIST OF SYMBOLS

Alfven number

magnetic field

' speed of light

specific heat at constant pressure

specific heat at cibstabt volume

electric field

charge of the electron

e2/mem; a constant

current density

scale length, Eq. (3-3)

Mach number

integration constant, Eq. (2-7), mass flow rate
magnetohydrodynamic number, Eq. (4-16)
mass of electron

mass of ion

integration constant, Eq. (2-8), momentum flux
scalar pressure

integration constant, Eq. (2~9), energy flux
Q/ u]2

gas constant

magnéfic Reynold number

temperature
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flow velocity

coordinate normal to the plane of the steady-state shock front

vertical coordinate in plane of steady shock wave

coordinate orthogonal to both x and y

ratio. of scalar pressure to magnetic pressure
percentage of charge separation

ratio of specific heats

electric resistivity

i‘.h characteristic value

mass density

subscripts 1 indicate quantities at upstream
subscripts 2 indicate quantities at downstream

caps indicate dimensionless quantities

primes indicate small perturbed quantities



ABSTRACT

This dissertation studies the structure of the plane magnetohydrodynamic
shock wave of a rarefied, fully-ionized plasma. Both the shock front and the magnetic
field are assumed to be perpendicular to the flow direction. In the undisturbed region,
the gas pressure (=nkT) can be comparable to, much smaller or much targer than the
magnetic pressure (=B2/8m) , and also the magnetohydrodynamic Mach number (M*)
can be any value greater than unity. Since the plasma is so rarefied that the mean~free-
path here cannot be considered as a relevant scale length for the shock thickness, instead
the geometrical mean of the ion and electron Larmor radius is the appropriate one.

Under these assumptions, the structure of large M* shock wave is solitary wave-like,
and that of the smaller M* shock waves can be either oscillatory or monotonic

depending on the value of electrical resistivity.



1. INTRODUCTION

This dissertation studies the structure of magnetohydrodynamic shock waves
in a rarefied, fully ionized plasma with an external magnetic field, ‘With particular interests
in that the speed of propagation of the shock front is quite high and that the gas pressure
is comparable to the magnetic pressure, the former is equivalent to o high Mach number in
gasdynamies and the latter implies that neither the gas pressure, i.e., the plasma temperature
nor the magnetic field can be neglected. Since the plasma is very rarefied such that its
jon-ion collision mean-free~path is much larger than the ion Larmor radius which, on the
other hand, is much larger than the Debye shielding distance of the plasma. Moreover, the
shock thickness to be found is of the order of a few geometrical mean of the ion and electron
Larmor radius. Thus it can be assumed that the effect of viscosity and thermal conduction
can be neglected because of the small value of the shock thickness. However, the plasma
electrical resistivity, which signifies a friction between ions and electrons, is retained and
behaves as the necessary dissipation mechanism in the continuum theory. For simplicity, the
effect of charge separation and the self-consistent electric field are not considered in the
main investigation, but as a justification they are to be computed by a perturbation method
in the discussion part of this study. Application of this dissertation can be made to the bow
shock formed by the interaction of the solar wind ™ with the magnetosphere and can also
be extended to the laboratory experiments on controlled-fusion.

Previous investigations 6-14 on the structure of shock waves cannof satisfy

the present model due to one or more of the following reasons: 1. no magnetic field was



considered; 2. gas pressure was neglected or only a cold plasma was considered: 3. the
shock thickness considered is of the order.of a few mean-free-path, which is too large to
represent a shock wave here; and 4. the propagation speed of the shock front is limited
to some small values.

Though it is mentioned earlier some particular interests are that the
propagation speed of the shock front is quite high and that the gas pressure is comparable to
the magnetic pressure, yet this analysis is so general that it covers any propagation speed

of the shock front and any finite ratio of the gas pressure to the magnetic pressure.



1. BASIC EQUATIONS

With the mathematical model stated in the Introduction, the problem
becomes a stationary one if the y ~ z plane of a cartesian coordinate system is chosen to be
fixed with the shock front. Then the x-axis is the direction of flow velocity u, and the
magnetic field B is specified in the z-direction. Figure 1 shows the transition region of

the shock wave and the following table lists all the physical parameters:

Upstream Transition region Downstream

Velocit

elocity Uy u u,
Pressure Py p Py
Temperature T 1 T Ty
Density )0] P _702
Magnetic Field By B 82
Current Density 3770 J J=0

Here the upstream quantities are given constants. The downstream quantities are also constants
but have to be determined from the classical method which was first investigated by de Hoffman
and Teller 15 and later by Helferlé. The quantities in the transition region are functions of x
and will be fully studied in this investigation.

No electric field is assumed in the stationary frame of reference, however,
- uiBy 17,18
with the moving coordinates an apparent constant electric field E (0, =————, 0) occurs .
U By Uy B2 ¢

It is interesting to note that E = = = = is also a given constant as shown later,




although v, and B, individually are yet to be determined.
Since all physical parameters depend on the x-coordinate only, Maxwell's
equation, the conservation equations for this problem, which are derived in Appendix 1, can

be written here as:

dB 4n

> - - e 2-1)

d Pu) =0 .

e (L) = L (2-2)
do_ _ dp 1 as?

e e i ~aler - 2-3)
d U2 Y d P cE dB

jU ..d_x ( 2 ) + ——Y —1 dx ( P ) + ™ dx =0 (2'4)

Here the equation of state for ideal gas is used, i.e.,
p = PRI (2-9)
In addition, the generalized Ohm’s law {Appendix 1I) is of the form
dJ J du S 1
ot T e T T['\J'?“E‘B")J =0 (2-6)
equation (2-6) gives the relation

Blu] 8202

[+3 c



which is mentioned earlier, since at both upstream and downstream regions

4 dv

= 0 and J=20
dx dx

%
Here the temperature dependence of the electrical resistivity is taken as TZ MooT

20
which was derived by Chapman and Cowling 19 and alos by Spitzer
It is further assumed that ¢, R, Feir and ¥ all are constant in this
analysis.

Equations (2-2), (2-3) and (2-4) can be integrated at once, giving:

Pu = M, = constant

=AY @-7)
TP
BZ
Pu tp+ - N = constant
2 B2
S e
2



S N +

=72 z A, &M, (2-9)
2

- Y2 5 P2 cEB,

Here ¥ takes the value 5/3; M,, N, and Q are integration constants and they can be

evaluated by the given quantities at upstream.

Equations (2-1), (2-5) through (2-9) are the basic equations describing the

coupled relations among all the physical parameters in the transition region.



I, THE GOVERNING EQUATIONS IN TRANSITION REGION

AND THEIR GENERAL PROPERTIES

1. The Governing Equations in Transition Region

The four algebraic equations [(2-5), (2-7), (2-8) and (2-9) ] and two
differential equations [ (2-1) and (2-6) ] are used to describe the behavior of all the
properties in the transition region. A cancellation of p, # , and T from the algebraic

equations can be made and leaves an equation of B and v as follows:

2

5 E
uz—m-o—(N- 3‘,3, )U-—;—(fMJB-Q)=O (3-1)

dB
further, differentiating (3-1) with respect fo x -and eliminating /dx through (2-1) gives

2 ¢ 1 dv, 1 , 5 _ )
@-20"x z3 B)Ta-+c—M°(7 Bu-cE) J=0. @3-2)

i
Thus equations k2—6), (3-1) and (3-2) are the coupled system of only three
dependent variables B, u, and J and are to be used as the governing equations in the

transition region.to determine the shock structure.

2. Non-Dimensional Equations

It is appropriate here to put the governing equations in a non~dimensional

form by introducing the following non - dimensional variables



a B u
B = ~m—— Q.
B] 4 u U.'
1o < 4 _ X
] Byuy 4 X =1

Here all symbols with subscript 1 denote the given physical quantities at upstream, and
L is a properly chosen scale-length which is defined in equation (3-3).

Substituting these variables into equations (2-5), (3-1) and (3-2) yields

2 2
12 - 2 MTUI - &erIu] 82) 3-%‘(2;%'3- ;?—) =0
(% - 282 4“B12 'é)u_’ gg +.Bl2 L2 (%ﬁ()-]) J=0
uq Mgyy Moe® 1,
:_34’}'3%(6“‘+9ei’;'\;f“ ML ;ZZ{ GJ; ) ]?29 =0
The scale length L is defined as
L= Jmgm <1 (3-3)

eB]

The physical meaning of L can be seen from equation (3-3) that it is the geometrical mean

of the ion and electron Larmor radius. Ry and A; are the magnetic Reynolds number and

the Alfven number defined as follows:



%U]L
Ry =
2N,
2
Y
1 T a2,
By /4 Py )

A
A B_ 1 db
(QO-ZUZ- Az)vur»d
R.. A
M2 ge-nd=o0 (3-5)
A2 ?
1
A A A
dJ J du " a TZ AAQ
— += < +72—(—J+BU-])=0 (3-6)
dx v dx v TZ'
Q M,
Here Qo = u]2 and a = g_. -:]-2—- 7Z] L = constant.

3, Characteristic Curves in & - ﬁ Phase Plane

Before getting into the details of the characteristic curves it is necessary to
E
consider the region of interest in the U - B phase plane. Since only positive values of the
flow velocity and the magnetic field are interesting in the fast-shock problem, only the first

quadrant of the § - 8 phase plane need be investigated (see Fig. 2). This region is further



bounded by three straight lines, (1) on the left by the minimum possible flow velocity, this is

the value of flow velocity when both B] and M. go to infinity, by equation (A-3-6)

1

o x =l
min T v + 1
- - e = 2
4 3

(2) on the right by =1 , beyond which no fast shock wave can exist; and (3) bounded below
by B= 1, where a magnetochydrodynamic fast=-shock is not possible. In the transition region,
there is no upper limit for /é . Therefore, choracteristic curves must lie above B=1 and
be bounded by 0 = "14:' on the left and by v =1 onthe right.

There are four characteristic curves in this region that are important in this
investigation, they ares

a. The locus of the downstream singularity point (32 R |/3‘2 ), since
B]u] = B2u2 this curve is described by the equation 8131 =1,

b. The solution curve, in the - E phase plane for a given upstream Mach

number and Alfven number, is described by equation (3-4).

c. The non-dimensional form of equation (2~1) is

B - T -
9B = - J 3-7)

dx

dividing equation (3-7) by (3-5) gives



i1

~ A2 2
dB A]2 (Qb - 2u -Iﬁ/A] ) 3-8)
do - AL AA

v ulBu~-1)

A
dB
when = 0, since A]2;r-‘ 0 and U is always finite the characteristic curve describing

A
the locue of all maximums of the solution curve in U - B phase plane is given by:

A
Q -282. 2 - 0 3-9)
o Af
4
d. The fourth curve is that dB/dG can only approach infinity since the

A 2
solution curve will never reach the curve (B g = —5—) which describes the slope going fo

A
infinity. Again it is pointed out that v s finite,

4.. Definitions of Different Magnetohydrodyriamic Shock Waves

A As mentioned in the last section, for a given upstream Mach number M],
the curve %?j_ = 0 changes its shape if the Alfven number A] varies, When the Alfven
number is such that curves (o) and (c) (see Fig. 3) are tangent o each other, then this
Alfven number is defined as the critical Alfven number and is denoted by A]*. Thus as

A] > Ar*, these two curves will intersect each other and this is the strong Alfven case
{Fig. 4); as A} € Ay*, these two curves do not intersect and this is the weak Alfven case

(Fig. 5).

Now, different magnetohydrodynamic shock waves can be defined as follows:
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a) Critical magnetohydrodynomic shock wave. This is defined as the

A AA
downstream singularity point (32 » By } falling on the tangent point of curves Bu =1

A
and %B,-\- = 0, Obviously this is only possible in the critical Alfven cose (Fig. 3).
u

b) Strong magnetohydrodynamic shock waves. This is the magnetohydrodynamic
A o
shock wave that has its downstream singularity point (GZ ¢+ By ) on the left side of the curve

2
::—E = 0. In other words, the solution curve started from the upstream singularity point
u A

A
( uys B] } crossing and intérsections the curve % = 0 to reach the point (32, B, )
(Fig. 4).

c) Wedk magnetohydrodynamic shock wave. When the downstream singularity
A

point (32 R B2 ) of a magnetohydrodynamic shock wave does not reach the curve
&
do

possible for the weak Alfven number case (Fig. 5).

= 0, then it is defined to be a weak magnetohydrodynamic shock wave. This is only

A
5.  General Properties in U — B Phase Plane

There are a few general properties of this investigation which can be deduced from
A A
the characteristic curves in the u-— B plane.
a A
a) The slope of the solution curve can be found. In the u - B plane, as the
N

dB
solution curve crosses the curve -;I-;;-= 0, its slope must change sign. By equation (3-7),
u

the slope is negative on the right-hand side of the curve = 0. The negative slope may
A

du A A
du dB du
: < — e — £ 0.
come from two cases; (1) = 0, but ™ > 0, and (2) = = 0, but o 0

21, 22

By the arguments of the existence of a shock wave , only the second case can be realized,

Similarly, on the left-hand side of that curve, the slope is positive, since it still requires
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A A
3—';— & 0 hence %- must also be negative. Therefore, it can be said that a weak
X X

A
magnetohydrodynamic shock wave always exhibits a monotonic character in U-B phase plane,
while a strong magnetohydrodynamic shock wave will overshoot to a (relative) maximum point

A
when crossing the curve %g- = 0, afterwards, both ifs § and ﬁ values will decrease
gradually until it reaches its downstream singularity point.
A
dB A . . .
b) The curve T ¥°° or Bu = 2/5 will never influence the solution

A A
curve, This is because the locus of the downstream singularity point, or the curve Bu=1,

A

d
will never cross this curve. By equation (3-7), this curve comes orginally from —T: =0,
do a2
thus o will never be zero on the entire solution curve owing to B u > 5
X
c) Another interesting property is that the intersection point of the curve
A
dB
o= 0 and B = 1 changes its position due to different given upsiream Mach numbers M] .
A
( By equation (3-7), -—d—E— = 0 means
di
B
Q -202 -2 =9 3-9)
[} A2

1

Evaluating Q,, by the given upsiream quantities as

1 3 1 1
Q = 5+ 5 +— (3-10)
Substituting (3-10) into (3-9) yields
I; 1 1 3 1 2
o= Lo+ S 2y
A2 2 2 M]2

1
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When B =1, the value of ' can be solved as

3
1 +=—5 (3-11)

s L

Equation (3-11) means that the upstream Mach number M] is the only factor to
determine the point of intersection. In addition, M; must always be greater than unity in

order to produce a shock wave.

N
6. General Properties in U - J Phase Plane

Since characteristic curves in 0 - _? phase plane are very difficult to obtain,
one can only catch some properties of the solution curve in this plane through its behavior in
v - 'ﬁ phase plane and equation (3-7), the latter relates j and SET directly.

X

For the case of weakmagnetohydrodynamic shock waves, it can be seen that the
solution curve in this plane must be U -shaped, i.e., the value of T decreases from the
initial zero until it reaches a (relative) minimum, then increases reaching its final (zero again)
valve, while U decreases monotonically to its downstream value 32 .

For the strong magnetohydrodynamic shock waves, one can see there is one more
singular point where _? = 0, and T s deferminid by the infersection of two curves, the
solution curve or equation (3-4) and the curve %— = 0 or equation (3-9). In the neighborhood
of this point, j\ will change rapidly from a large positive value, and equation (3-5) will be

A A A
undetermined there. In the neighborhood of this point, the values of B, u, and x change very

slowly in comparison with the changes in J thus through equations (3-5) and (3-6) one can find
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the approximate expressions for J and —gi respectively as follows:
x
A a
A v =1
J¥ a2 °2 (% =xg) (3-12)
4}
Yo
5 ~ A Aoa
.%:‘_ > . Rmy uo(..g.Bouo—l) (3-13)
A2

A A N
Here By, u, are the intersection point of equations (3-4) and (3-9), and X, s the point X
A
in physical space at which B, and Go exist.,
)
The complete solution curve in the G- plane can, therefore, be obtained by

equations (3~12) and (3-13).



IV. ASYMPTOTIC BEHAVIOR AT SINGULARITIES

In order to understand the behavior of the solution curves at either the upstream or
the downstream singular point, ‘it is appropriate to utilize an asymptotic analysis of the

differential equations in the neighborhood of the singularities.

1. At Upstream Singularity

Since equations (3-5) and (3-6) were derived subject to a normalization by the

given upstream quantities. They can be used here directly as follows:

A
2 B 1 db +Rm](5M\

- 2%° - — Y -1 0 4-
@ - 2u A2 VR A2 B J- “-1)
A A
dJ J dl’l\ a A = -2
= +_G ;2 %I_ + 0 (4-2)

' A A N
Now, let the values of B, U, and J vary in the neighborhood of the upstream

singularity point as:

w3
It

1+ B
U=1+u
A
J=27 (4-3)

Here primed quantities denote the small increments (decrements if they are negative) in the

variables.



Substituting (4-3) into equations (4-1) and (4-2) and retaining only first order

terms of increments yieldss

1 dut 3 Rmy .
(Qov—2- A,Z) ™ + 75" A]2 J'=20 (4-4)
) yaeB o) =0 (4-5)
dx

Here n/n, » was neglected, since it is essentially unity.

Evaluating the value of Qo by the given upstream quantities yields

1 3 1 1
Q = o —— o —
. 2 0,2
o 2 2 M ; A]‘ ‘
Thus equation (3-9) can be written as:
1 3 1
Qo-2-F=2(W—I) (4-6)

Combining equations (4-4) and (4-6) gives:

(=5 1-5’-”-'+Rm]J'—o 4
M]2 )dx A-|2 - 4-7)

By the method of solving simultaneous linear differential equations, assume

B' = Fi e}‘ix

Gi e%,m

3= HieﬂM% (4"8)
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g

Substituting (4—8)jin'l'o equations (4-5) and (4-7) dand cancelling out the common factor yields:

( 1 Rm.
i -1 .G, + H =0
M]2 ) A9 A]2 i
(4-9)
aF; + aG; + (a+X;)H; = 0
Now, by equation (3-7), F; isrelated fo H; as follows:
Rm.
S ) (4-10)
i
N
thus, equations (4-9) can be rewritten as
1 Rm
L (4-11)
‘ . Rm
aG, + (6+N = a —L—)H =0

The non-trivial solutions of G; and H; in the homc;‘geneous equations (4-11)

require that the determinant of their coefficients equal to zero, i.e.,

( A bl
T = DA
M] 1 A]Z
=0
Rm]
a a+7\i—a
}\i




which can be expanded to

1 Rm
(a+ X:) ™ =~ aRm (—= =-1)-a =0
[ i i 1 M]2 A 2
1
or
2 1
1i+a')\.—akm 1+ 1 =0
i 1 2 .
A D
M.2
1
Solving for>\i gives
7‘12="92' ¥ \ﬁ+i§l[l+__:_____] (4-12)
’ o A (—,- 1)
M
Since the Alfven number A; is related to the Mach number M, by the equation
B
A2 = —L m? (4-13)

1.2

If we divide the values of Mach number into three regions each of which will bear

a special meaning to this investigation

1.2
-a) M]2 > 1+ =
1

In this region, if the terms in the square bracket under the square-root sign in (4-12)

is rearranged by using ( 4-13°), it gives
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1 + - ! A=]___...Lg..__.

2
A% A—-1) B (My - 1)
1 2 1
My

(4-14)

therefore, as M]2 >+ . (4-14) is always positive. Two roots of (4-12)

1
in this region must be of opposite signs, which signifies that the singularity point of this

region is a saddle point. This turns out fo be the necessary upstream condition for a

magnetohydrodynamic shock,

b 1< M2 < 14+ 12
1 :B]

In this region, (4-14) is always negative, then the singularity point can be of

either one of the following two cases; if
-1 <L [ Tt —eo— 1< 0
a 1
A=,
1 M]2

7*] and 7—2 in (4-12) are of the same sign which signifies the singularity point in

this case is a nodal-point; and if

4Rm] 1
— 1+__._]___.... < -1
a A —-1)
1 M2

1

both - and >~ 5 are complex numbers, The singularity point, therefore, is a

focal-point.
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However, the upstream Mach number cannot be within this region, a
calculation of the downstream quantities shows this case is against the thermodynamic

21,22

laws

c) M]2 <

As proved in Il - 5 - (c), the upstream Mach number M] must always be
larger than unity, Thus this region does not hold for upsiream either.
in conclusion of this section, it can be said that the Mach number M; ot

upstream must fulfill the following condition:

MZ> 1 1.2
B

2. At Doéwnstream Singularity

Following the same procedures as in section (1) for at upstream singularity,

two roots in equation (4-12) here can be written as

4R 1
o= e ) a1 272 s 1
1 2 d 2.1
Az(»""’z'])
My
(4-15)
- 1
. 4 Rm 1
Ny = - —;—— 1+‘\/l+ 2 [1+ ]
a 2, 1
A —o- D)
My
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Similarly, the valuves of downstream Mach number M, can also be divided into three

regions as follows:

a) M22 =1

2
For M2 < 1, while Rmy and A2 are always positive numbers, the values under
the square=root in (4-15) are always positive and larger than unity. > i and A o are,
therefore, of opposite signs in this region. Thus, if My < 1, the downstream singularity point

is.a saddle-point.

b T M2 =1 + —22
) < 2 = 321

In this region by the analysis in the previous section, the singularity point can be
either a nodal~point or a focal-point depending on whether the value under the square-root
sign in (4-15) is positive or negative. If positive, if is a nodal-point. Physically the
significance of the nodal~point is monotonic shock wave behavior and that of the focal-point
is oscillatory shock wave behavior. The dividing line of these zones which corresponds to the
value under the square-root sign in equation (4-15) equals zero. Fig. 6 illustrates the
phenomenon for the case where the Alfven number is equal to 1.2, Obviously, for other
Alfven numbers similar curves can be plotted,

1.2

2
c) M2 =1 + 5
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In this region, there is only a uniform transition, therefore, no shock wave
would exist,

In conclusion to the present chapter, if a magnetohydrodynamic number

M¥* is defined as

M2 = M (4-16)
N
8

then, whenever M* = 1, it signifies an upstream condition, while M* < 1, a downstream
condition. The latter can further be divided into .a saddle-region and a nodal- of - focal~
region depending on whether My is larger or smaller than unity. All this information can be

summarized info a plot of M* versus B asin Fig, 7.
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. V. THE STRUCTURES OF MAGNETOHYDRODYNAMIC SHOCK WAVES

In chapters [1l and IV, the general properties of the solution curve in phase
planes and its behavior in the neighborhood of the singularity points has been discussed. Now,
it is the purpose of the present chapter to obtain the details of the solution curve in the physical
space,

Since the coupled differential equations (3-4), (3-5) and (3-6) are highly
non=linear, only a numerical method can be used to obtain the solutions. As discussed earlier
in this investigation, the structures of different magnetohydrodynamic shock waves are distinct

one from another, thus a study of them separately seems necessary.

1. Strong Magnetohydrodynamic Shock Waves

The characteristics of a strong magnetohydrodynamic shock wave are: (o)
it is also strong Alfvenic, (b) its solution curve is not monotonic, (c) both its upstream and

downstream singularity points are saddle-points, and (d) its solution curve has to cross the
dB

curve =0
du

Since both the upstream and downstream singularities are saddle-points,
numerical integration must be started from the neighborhood of these two singularities. As the
integrafions from both sides proceed, they would meet theoretically at the intersection of
equations (3-4) and (3-9). However, they can only be approached as close as possible and
never be reached owing to the limit of numerical techniques. Thus, the approximate method

described in 11l - 6 will be used to connect them in the neighborhood of this intersection point.,



2,  Weak Magnetohydrodynamic Shock Waves

According to the analysis given previously, the structure of weak

magnetohydrodynamic shock waves are of two types, either one has a saddle~point as required

for the upstream singularity, but the downstream singularities are quite different, one is

a nodal~point the other .a focal - point. The saddle to nodal transition exhibited a monotonic

structure, and the saddle to focal gave an oscillating character. The structure for both types

are computed for the same given upstream quantities except for the electrical resistivity, these

ond the calculated downstream quantities are as follows:

Temperature
Magnetic field

Flow Velocity
Pressure

Mach Number

Alfven Number
Magnetohydrodynamic
Pressure ratio

Scale length

Electrical resistivity

Electrical resistivity

Upstream

10° °K

24 Kilogauss

7.36 x 107 cm/sec
1.38 x 10° dyne/cm2
19.85

1.4

1.4

0.006

3.587x 10 em

Monotonic case

10—13

Oscillated case

]0-14

Downstrearn
7.2T,

1.5 B,
0.667 v,
10.6 pr
4.92

0.76

0.75

0.029

5.36 x 10712

5.36x 10712
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The results of the monotonic case are tabulated in Table 11 and plotted in
Figs. 10 and 11, and those of the oscillatory case in Table 11| and Figs. 12 through 14. The
situation here is very similar to charging @ condenser through a R-L-C circuit, where as the

resistance is small it gives an oscillatory results, otherwise it is monotonic.
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VI. DISCUSSION AND CONCLUSION

1.  Discussion

For the model proposed in the introduction and formulated in chapter 1, the
structure of either strong or weak magnetohydrodynamic shocks can be obtained in the
investigation, It is further found that the profile of magnetic field of a strong shock is
quite different from that of a weak shock, the magnetic field in the strong shock is of the
kind of a solitary wave-like while that in the weak shock is monotonically increasing to or
through an oscillating transition and then reaching to the downstream value., However, the
variations of other parameters, e.g., flow velocity, pressure, etc,, are still in a monotonic
manner as those of the weak shock.

As a justification to the assumption that the effect of charge separation is
negligible, a calculation of it and the corresponding electrical field has been made by using
equations (A-1-2), (A-1-6), (3-4), (3-5) and (3-6) and plotted in Figs. 15 and 16. The
results are very interesting. For the strong shock wave case, in front of the singularity, the
magnetic effect dominates while at the back of the fluid properties dominate thus the self--
consistent field makes a sharp change there. As for the weak shock wave case, the change
of the charge separation as well as the eleciric field is very smooth and they are small in
comparison with the other terms indeed.

A further work along this investigation can be achieved by inclusion of both
viscous effect and thermal conduction. These terms will not only justify the present work in

the experimental controlled-fusion case where the geometrical mean of the Larmor radius of
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two species is not very small in comparison with the mean-free-path, but also remove the
dB . . . e

curve —5 = 0 where a singular point present. However, one more differential equation
du

will be added thus a whole new analysis should be involved and cannot be considered as an

extension fo the present investigation,

2. Conclusion

It is now appropriate fo conclude this investigation by giving the following
important pointss

a)  The structure of magnetohydrodynamic shock waves can be found for any
given upstream conditions with this model. The structures, however, are different if the
downstream singularity point falls in the different regimes defined in chapter 1V,

b)  The structure of all strong magnetohydrodynamic shock waves is similar
in shape; while that of weak shocks can be of two different shapes, e.g., a monotonic and
an oscillatory shape, as to determine which is the shape of a specific model, a simple
calculation as derived in V-1 can be used.

¢} The magnetohydrodynamic shock wave is strong or weak depending upon
both Mach number and Alfven numbers af upstream. Therefore, there is no single number which
can be used to separate the strong and weak shock waves. Instead there is.a curve in B1 - M,
plane (Fig. 17) which separates these iwo regions.

d)  As a justification of the assumption, the mean-free-path and the geometrical
mean of the electron and fon Larmor radius were calculated for the two cases considered in

chapter V. The calculated values are as follows:
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Solar Wind Model Controlled-fusion model
Mean-free-path 4.8x 10t em 0.31 cm
Larmor radius 2.56 x 106 cm 3.587 x 10—3 cm

e)  Unlike in the neutral gas, whose shock thickness is understoad of the
order of a few mean-free-paths, here it is shown that the thickness of a magnetohydrodynamic
shock can be much smaller than a mean-free-path.

f) The shock thickness of the solar wind case found in this investigation
is of the order of 50 km. This result agrees quite well with the observed values although o

smaller electric resistivity was included in this work.
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TABLE 1
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0.54808
0.47529
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TABLE I

Numerical Solution for Weak Shock Wave ~ Monotonic Case

Xx 1072 B A Tx10 3

0.1 1.0001 0.99994  -0.0006 1.0001
0.5 1.0002 0.99987 -0.0012 1.0002
1 1.0006 0.99969 -0.003 1.0005
1.5 1.0015 0.99924 -0.0073 1.0014
2 1.0037 0.99811 -0.0181 1.0039
2.5 1.0091 0.99534 -0.0444 1.0123
3 1.0225 0.9884 -0.1114 1.0468
3.5 1.0588 0.96893 -0.3385 1.2366
3.6 1.0733 0.96088 -0.4617 1.3506
3.7 1.0940 0.94924 -0.6803 1.5476
3.8 1.1264 0.93033 -1.1505 1.9391
3.85 1.1517 0.91519 -1.6318 2.3074
3.9 1.1891 0.89199 -2.5242 2.9490
3.95 1.25 0.85236 -4.2788 4,2082
4 1.3523 0.78094 -6.7034 6.7481
4.05 1.4651 0.69578 -4.2169 9.6906
4.1 1.5013 0.66728 -0.5158  10.523

4.15 1.5045 0.66475 -0.0284  10.591

4.2 1.5046 L 0.66462 -0.0012  10.594

4.3 1.5046 0.66461 -0.000 10.595
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TABLE 111

Numerical Solution for Weak Shock Wave - Oscillatory Case

Xx 107 B v Jx 10 P

1 1.0005 0,99975 -0, 0022 1.0004
2 1.0024 0.99875 -0.0106 1.0024
3 1.0121 0.99379 -0.0525 1.0184
4 1.0627 0.96680 -0.3042 1.2649
4.2 1.0912 0.95079 -0.4920 1.5193
4.4 1.1403 0.92207 -0.8934 2.1346
4.6 1.2359 0.86175 -1.8282 3.8951
4.8 1.4313 0.72193 -3.5313 8.8395
5 1.6522 0.54454 -0,4785 11.825
5.2 1.4978 0.67006 2.6922 10.447
5.4 1.3808 0.76003 0.4114 7.5051
5.6 1.4250 0.72673 -1.4753 8.6763
5.8 1.5550 0.62409 -1.4503 11.505
6 1.5558 0.62349 1.2629 11.516
6.2 1.4612 0.69885 0.8545 9.5947
6.4 1.4507 0.70699 -0.5262 9.3343
6.6 1.5153 0.65607 -0.9451 10.815
6.8 1.5440 : 0.6330 0.3049 11.336

7 1.4965 0.67105 0.6734 10.420
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Appendix | Derivation of Basic Equations

1. Maxwell equations

For a medium in steady-stafe, the Maxwell equations can be written as

VXE'=-4—C“—T
VXE‘:‘- 0
V.8 = 0

V. E'= 4ne (ng-ny)

Here the permeablility is taken as unity and neglected in the equations.

For the model in this investigation, we have the following assumptions (cf. chapter I)

A
B = ks
uy B
£, =]
c
NSy

A A "
Here i, |, and k denote the unit vectors along x, y, and z direction respectively,

Therefore, the equations can be summarized as:

(A-1-1)
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and gix = due (n; - ng ) (A-1-2)

2. Equations.of conservations

The conservation equations for a system which has no viscosity, thermal conductivity

and body force can be written as

P
DV . _ + ] ~» —»
_)D_.__D_f, Ve — JxB (A-1-3)
1 DV

For the steady-state case with each and every parameter varying oenly along the

x direction, we have

B =
ot 0
b _ L
Dt =~ YTdx
~d
v =T%
and that
P _Cv p ., »p C P -_Y o
e + —p T = — F e = E —_ = —
L R P LGS L T P
Here cC, -C, =R
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Thus equations (A-1-2) can be written as follows

4 (Py=0
dx
po v db 1 aB? (A-1-4)
v dx dx "~ Br Tdx
d u2

Equations (A~1-1) and (A-1-4) are the basic equations (2-1) through (2-4) in chapter II.



Appendix ll.  Derivation of the Generalized Ohm's Law

The equations of motion for each species, i.e., electron and ion, can be

written as follows;

NeMe _E%/; == VP - “ee(é’*‘ _Y%"_E) = "‘eze2 n (Ge - \71 )
nm; —g;/: ==Vp;+ “ie(g"' _Vi'&)_(i) + ne2e2 n (\-;e 'Vi)

Multiplying (A-2-1) and (A-2-2) by _r:_e and _’:i_ respectively yields:
e —E?—eé,—:; v b, - “iz & + Zcx_'i%_’)_{_ﬁ n &, -%
ne Ef\_; = VR ni,ez &+ 528, ,,e::? N @G-V

(A-2-1)

(A-2-2)

(A-2-3)

(A-2-4)

(A-2-5)

Subtracting (A~-2-4) from (A-2-3) and neglecting terms of fe in compérison
mj
to unity yields
1 Dn Dn
DJ = e vi i
- Ve YeViTh
e nee® =2 VexB nge
_'_,?.:ve m (E+ ) - m 7?(Ve'vi)
where
T=e (n:V, -n v )
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By assuming n, = n; = n , the y-component of (A-2-5) is of the form

‘ Me 1 =
T et ey [T(J- - Bu)] =0

This is basic equation (2-6).
By introducing

ng = (1+ § )n
nno= (1= §)n

ui=(]+S)u

ug = (1-§)v

_ h=ne =ne+n;
where = - , N —

The x - component of (A-2-5) can be written as follows
2 B

d Ne 7 § = - Mo dv = dB
dx umg 4nmeu2 dx ]6m‘menu2 dx
e 1
+ B+ JB
2meu2 x 2mecnu2

(A-2-6)
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Appendix IHl,  Stationary Solutions

The stationary solution (The Rankine~Hugoniot relation) of the physical
properties at downstream is obtained here as a function of given physical quantities at

upstream. These results not only give some insight about their variation as influenced by

different given upsiream conditions, but also are needed to begin obtaining solutions of the

properties in the transition region.

In either upstream or downstream, the flow is uniform which signifies that

i
du=0
dx

and £=0
dx

Thus Equation (2-6) yields

Bjup _ Bau

c c

E =

From (2-7), (2-8) and (2-9) eliminating pg and j)z gives

5 Bp? 1 ,CE _
U22 - mo(N__B%—)UZ_T(m;BZ-Q) =0

(A-3-1)

(A-3-2)



Substituting (A-3=1) into (A-3-2) and rearranging yields

2.2 ,
3.3 N 2 lquedl £F - -3-
Uy i Mouz 2QU2 B_E_Mo_ 0 (A33)

Inserting My, N and Q by /0], Uy Py and B],fhere follows that
Uy = u, , isasolution of (A-3-3) . Factoring off (ug - uy), there remains a quadratic
25 27 Y q

equation for u,,

2 5N Q 5N .
uy +(u]--m-;)u2+(—2—+u]2--4—f—])-o (A=3-4)

Introducing 02 , the downsitream to upstream velocity ratio; M7, the upstream

sonic Mach number; and ‘B] , the gas pressure to magnefic pressure rafio as

Uy = _:?_

M]2= u]2/—§— P—:-
and B] =p/ Baf
Then (3-4) becomes

8,2 - Kqu =Ky = 0 (A3-5)
Where K]=—l—+4—3';‘-]2( ]"'Bi])

Kz =_§o‘ ]



44

The solution of u, that is positive is

6, = XL 4 K]2+K A-3-6
2 1 -7 2 (A-3-6)

Recalling that uy in the pure gas-dynamic shocks is

3

4M]2

T
=T+

Y2

Therefore, the velocity ratio of a-magnetohydrodynamic shock is always greater
than that of the pure gas-dynamic case, for the same given upstream Mach number.
All other physical properties at downstream can also be derived as functions of

By and M; from (2-6) through (2-9) ond (A-3-6), they are

Ja" _ 2 1 (A-3-7)
2 - e
£ V2
B, = 2 ] A-3-8
2 B] _{g (A-3-8)
2
R BN AL\ W U S S RS D (A-3-9)
2 3 By 62
P !
A T
T, = & =22 (A-3-10)
=
1 Vo
B
2
M, = M (A-3-11)
2 —\/'1\ 1

Equations (A-3-6) through (A-3-11) were calculated for various B] and M] values

and plotted in Figures (A-3~1) through (A-3-4).
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Fig. 3. Typical critical MHD shogk wave case, (Gz,gz) is the point
of tangent of the curves B0 =I and dB/dG=0.
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Fig. 4. Typical strong MHD shock/\\che case, (0, ,léz) is -always
on the left of the curve dB/d6 = 0.
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Fig. 5. Typical weak MHD shock wave case, (1, ,ﬁz) is always
on the right of the curve d’ﬁ/dﬁ =0.

49



Rm2

FOCAL REGION
(Oscillatory)

NODAL REGION
{Monotonic)

oF
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Fig. 6. Dividing line of oscillatory and monotonic regions of

weak MHD shock waves for Ap=1.2.
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Fig. 17. Different regions of Alfvén numbers in M, - B, plane.
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